M.Sc. DEGREE EXAMINATION - STATISTICS

FIRST SEMESTER - NOVEMBER 2007
ST 1809-MEASURE AND PROBABILITY

SECTION A

Answer ALL questions

$$
2 * 10=20
$$

1. Let $\left\{A_{n}, n \geq 1\right\}$ be a sequence of numbers defined as follows.

$$
A_{n}=\left\{\begin{array}{l}
\left(\frac{-1}{n}, 1\right] \text { if } n \text { is odd } \\
\left(-1, \frac{1}{n}\right] \text { if } n \text { is even }
\end{array}\right.
$$

Find $\lim _{n \rightarrow \infty} \sup A_{n}$ and $\lim _{n \rightarrow \infty} \inf A_{n}$
2. Show that every σ field is a field.
3. Define Counting measure.
4. Give the definition of a simple Borel measurable function.
5. State Radon - Nikodym theorem.
6. Give an example to show that two different random variables can have same distribution function.
7. If the random variable X takes only positive integer values then show that
$E(X)=\sum_{n=1}^{\infty} P(X \geq n)$
8. If $Y_{1} \leq Y_{2}$ then show that $E\left(Y_{1} \mid \dot{\mathrm{g}}\right) \leq E\left(Y_{2} \mid \dot{\mathrm{g}}\right)$.
9. Define Convergence in distribution of a sequence of random variables.
10. State the Central Limit Theorem of a sequence of random variables.

SECTION B

Answer any FIVE questions
 $$
5 * 8=40
$$

11. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of real numbers and let $\mathrm{A}_{\mathrm{n}}=\left(-\infty, X_{n}\right)$. What is the connection between $\lim _{n \rightarrow \infty} \sup A_{n}$ and $\lim _{n \rightarrow \infty} \sup X_{n}$
12. Let $\left\{A_{n}, n \geq 1\right\}$ and $\left\{B_{n}, n \geq 1\right\}$ be two increasing sequences of sets defined on $(\Omega, \mathfrak{I}, \mathrm{P})$ such that $\lim _{n \rightarrow \infty} A_{n} \subset \lim _{n \rightarrow \infty} B_{n}$ then show that $\lim _{n \rightarrow \infty} P\left(A_{n}\right) \leq \lim _{n \rightarrow \infty} P\left(B_{n}\right)$
13. State and prove Fatou's lemma.
14. State and prove Minkowski's inequality.
15. a.) Define discrete and continuous random variable.
b.) Let X be a random variable with the distribution function

$$
F(x)=\left\{\begin{array}{cl}
0, & x \prec 0 \\
\frac{1}{4}, & 0 \leq x \prec 1 \\
\frac{1}{2}, & 1 \leq x \prec 2 \\
\frac{1}{2}+\frac{x-2}{2}, & 2 \leq x \prec 3 \\
1, & x \geq 3
\end{array} \quad \text { Show that } \mathrm{X}\right. \text { is neither discrete nor continuous. }
$$

16. Let X be a random object defined on $(\Omega, \mathfrak{I}, \mathrm{P})$ and let $B \in \mathfrak{I}$. Show that $\mathrm{E}\left(\mathrm{I}_{\mathrm{B}} \mid \mathrm{X}=\mathrm{x}\right)=\mathrm{P}(\mathrm{B} \mid \mathrm{X}=\mathrm{x})$ a.e. $[\mathrm{P}]$.
17. Let $Y_{n} \geq 0 ¥ n \geq 1$ be a sequence of random variables such that $Y_{n} \uparrow Y$.

Show that $E\left(Y_{n} \mid \dot{\xi}\right) \uparrow E(Y \mid \dot{\mathrm{g}})$ a.e. $[\mathrm{P}]$.
18. Let $\left\{Y_{n}, n \geq 1\right\}$ be a sequence of iid random variables with the probability density function $f(y ; \theta)=e^{-(y-\theta)}, y \geq \theta$. Let $\mathrm{X}_{\mathrm{n}}=\min \left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$. Show that $X_{n} \xrightarrow{\text { a.s. }} \theta$.

SECTION C

Answer any TWO questions
 $$
2 * 20=40
$$

19. State and prove Basic Integration Theorem.
20. a.) State and prove Additivity theorem of integral of Borel measurable functions.
b.) Let μ be a measure and λ_{1} and λ_{2} be signed measures defined on the σ field \mathfrak{I} of subsets of Ω. Prove that if $\lambda_{1} \perp \mu$ and $\lambda_{2} \perp \mu$, then $\left(\lambda_{1}+\lambda_{2}\right) \perp \mu$
21. a.) A coin is tossed independently and indefinitely. Define the event $A_{2 n}$ as in the $2 \mathrm{n}^{\text {th }}$ toss equalization of head and tail occurs. Show that $\mathrm{P}\left(\mathrm{A}_{2 \mathrm{n}}\right.$ occurring infinitely often) is zero or one corresponding to the coin being biased or unbiased respectively.
b.) State and prove Weak law of large numbers.
22. a.) Let $(\Omega, \mathfrak{I}, \mathrm{P})$ be a probability space and let $\dot{\mathrm{g}}$ be sub σ field of \mathfrak{I}. Fix $B \in \mathfrak{I}$.

Show that there is a function $\mathrm{P}(\mathrm{B} \mid \dot{\mathrm{g}}):(\Omega, \dot{\mathrm{g}}) \rightarrow(\mathrm{R}, \mathrm{B}(\mathrm{R}))$ called the probability of $\mathrm{B} \mid \dot{\mathrm{g}}$ such that $P(C \cap B)=\int_{c} P(B \mid \mathrm{g}) \mathrm{dP} \forall \mathrm{c} \in \mathrm{g}$. Further show that any two such functions must coincide and $\mathrm{P}(\mathrm{B} \mid \dot{\mathrm{g}})=\mathrm{E}\left(\mathrm{I}_{\mathrm{B}} \mid \dot{\mathrm{g}}\right)$ a.e. $[\mathrm{P}]$.
b.) Show that $X_{n} \xrightarrow{\text { a.s }} X$ does not imply $X_{n} \xrightarrow{\text { q.m. }} X$. Also show that $X_{n} \xrightarrow{\text { q.m. }} X$ does not imply $X_{n} \xrightarrow{\text { a.s }} X$.

